jueves, 17 de abril de 2014

Impulso nervioso



La membrana plasmática forma el límite externo continuo del cuerpo celular y sus prolongaciones y en la neurona es el sitio de iniciación y conducción del impulso nervioso. Su espesor es de aproximadamente 8 nm lo cuál la hace demasiado delgada para poder ser observada por un microscopio óptico. Con microscopio electrónico se observa una campa interna y otra externa de moléculas dispuestas muy laxamente (cada capa aproximadamente de 2,5 nm) y separadas por una capa intermedia de lípidos. Moléculas de hidrato de carbono se encuentran adheridas al exterior de la capa plasmática y se unen con proteínas o lípidos formando lo que se conoce como cubierta celular o glucocálix.     La membrana plasmática y la cubierta celular juntas forman una membrana semipermeable que permite la difusión de ciertos iones a través de ella pero limita otras. En estado de reposo los iones de K+ difunden a través de la membrana plasmática desde el citoplasma celular hacia el líquido tisular. La permeabilidad de la membrana a los iones de K+ es mucho mayor que el influjo de Na+. Esto da como resultado una diferencia de potencial estable de alrededor de -80 mv que pueden medirse a través de la membrana ya que el interior es negativo en relación al exterior. Este potencial se conoce como potencial de reposo.     Cuando una célula nerviosa es excitada (estimulada) por un medio eléctrico, mecánico o químico, ocurre un rápido cambio de permeabilidad de la membrana a los iones de Na+, estos iones difunden desde el liquido tisular a través de la membrana plasmática hacia el citoplasma celular. Esto induce a que la membrana se despolarise progresivamente. La súbita entrada de iones Na+ seguida por la polaridad alterada produce determinado potencial de acción que es de aproximadamente +40 mv. Este potencial es muy breve (5 nseg) ya que muy pronto la mayor permeabilidad de la membrana a los iones de Na+ cesa y aumenta la permeabilidad de los iones K+, de modo que estos comienzan a fluir desde el citoplasma celular y así el área localizada de la célula retorna al estado de reposo.     Una vez generado el potencial de acción se propaga por la membrana plasmática, alejándose del sitio de iniciación y es conducido a lo largo de las neuritas como el impulso nervioso. Una vez que el impulso nervioso se ha difundido por una región de la membrana plasmática, no puede provocarse otro potencial en forma inmediata. La duración de este estado no excitable se denomina período refractario. 

    La transmisión, que no es más que un desplazamiento de cargas eléctricas por la membrana neuronal, constituye el impulso nervioso. Este impulso es la base de todas las funciones nerviosas, incluidas las superiores. Debido a esto, y empleando instrumentos especiales de medición, se puede detectar la actividad nerviosa en forma de pequeñas corrientes eléctricas, tal es el caso de la electroencefalografía.     Un impulso nervioso es una onda de electronegatividad que recorre toda la neurona y que se origina como consecuencia de un cambio transitorio de la permeabilidad en la membrana celular, secundario a un estímulo.     La excitabilidad de las neuronas depende de la existencia de distintas concentraciones de iones a ambos lados de la membrana celular y de la capacidad de transporte activo a través de estas membranas. La excitación neuronal se acompaña de un flujo de partículas cargadas a través de la membrana, lo cual genera una corriente eléctrica.     La membrana de las células está polarizada, debido a que hay un reparto desigual de cargas eléctricas entre el interior y el exterior de la célula. Esto crea una diferencia de potencial, siendo el exterior positivo respecto al interior.     En el exterior, en el líquido intersticial, el anión más abundante es el de cloro. En el citoplasma, los aniones más abundantes son las proteínas, que en el pH celular se ionizan negativamente. El catión más abundante en el líquido intersticial es el de sodio, y en el citoplasma el de potasio.     El desequilibrio iónico que produce la polarización de la membrana es debido a la distinta permeabilidad que presenta frente a cada uno de los iones. El ión de potasio atraviesa la membrana libremente. La permeabilidad para el sodio es menor, y además es expulsado por medio de un transporte activo llamado bomba de sodio. Las proteínas, debido a su tamaño, no pueden atravesar libremente la membrana. Toda esta dinámica establece una diferencia de potencial en condiciones de reposo, de unos -70 mV.Es lo que se denomina potencial de membrana.     Cuando se aplica un estímulo adecuado a la membrana de la neurona, se altera su permeabilidad, permitiendo la entrada de iones de sodio a favor de su gradiente de concentración. Este tránsito es tan intenso que la bomba de sodio resulta ineficaz. El flujo de sodio invierte la diferencia de voltaje pasando el exterior a ser negativo y el interior positivo (+30 mV).     Conforme se iguala el gradiente de concentración, el flujo de sodio decrece, mientras que el potasio sale de la célula para neutralizar la electronegatividad del exterior. El tránsito de potasio se produce un milisegundo después que el de sodio. La salida de potasio es mayor que la necesaria para restablecer el potencial de reposo, por lo que la membrana queda hiperpolarizada, con mayor electronegatividad en el interior.    La cantidad de estímulo necesario para provocar la actividad de una neurona, se denomina umbral de excitabilidad. Alcanzado este umbral, la respuesta es efectiva, independientemente de la interrupción o aumento del estímulo. Es decir, sigue la ley del todo o nada. Durante la despolarización, la neurona no es excitable, es decir, está en periodo refractario. Durante la hiperpolarización subsiguiente, la neurona es parcialmente excitable, parcialmente refractaria, es decir, que necesitamos un estímulo más intenso para provocar un nuevo potencial de acción, ya que ha aumentado el umbral de excitabilidad.
    La despolarización de la membrana en un punto produce que el exterior en ese punto quede cargado negativamente al introducirse las cargas politivas de sodio en la célula. Las zonas adyacentes sufren una atracción de sus cationes por la carga negativa del área estimulada, actuando como sumidero de cationes de sodio. De este modo, se va transmitiendo la onda de electronegatividad a lo largo de toda la fibra nerviosa. 
    En el SNC los axones están rodeados por la mielina de los oligodendrocitos (fibras nerviosas mielínicas del SNC), mientras que en el SNP pueden estar rodeados, ya sea, por prolongaciones citoplasmáticas de las células de Schwann (fibras amielínicas) o por la mielina las células se Schwann (fibras nerviosas mielínicas del SNP)


Fuente : http://www.javeriana.edu.co/Facultades/Ciencias/neurobioquimica/libros/neurobioquimica/impulsonerv.htm


No hay comentarios:

Publicar un comentario